Space colonization has reached an impasse, for reasons far more fundamental than a lack of money for the Space Shuttle program. There is simply no way humans can travel easily offworld without using massive amounts of rocket fuel to escape the gravity well — and that's both expensive and environmentally unsustainable. So how will we get off this rock?

To help humanity explore the universe and spread to the stars, we first need to escape the gravity… Read…

That was the subject of a three-day conference I attended at Microsoft's Redmond campus this weekend, where scientists and enthusiasts talked about plans to build a space elevator. This enormous engineering project would allow us to haul materials, and eventually people, into high orbit without rockets. Some say the project could get started within a decade, and NASA is offering prizes of over $1 million to people who can come up with materials to make it happen. Here's what needs to happen before you can ride an elevator into space, according to speakers at the Space Elevator Conference.

Physicist and inventor Bryan Laubscher kicked off the conference by giving us a broad overview of the project, and where we are with current science. The working design that the group hopes to realize comes from a concept invented by NASA scientist Bradley Edwards, who wrote a feasibility study of space elevators in the 1990s called The Space Elevator. His design calls for three basic components: A robotic "climber" or elevator car; a ground-based laser beam power source for the climber; and an elevator cable, the "ribbon," made of ultra-light, ultra-strong carbon nanotubes.

Edwards' design was inspired, in part, by Arthur C. Clarke's description of a space elevator in The Fountains of Paradise.

The elevator's design is fairly simple. It's attached to the Earth at the equator, probably on a floating platform off the coast of Ecuador in international waters. The ribbon stretches 100,000 kilometers out into space, held taut by a counterweight that could be anything from a captured asteroid to a space station. Along the thread would be way stations where people could get off and transfer to orbiting space stations or to vessels that would carry them to the Moon and beyond.

We have some basic problems to surmount, from weather and space junk wrecking the elevator ribbon to the legal status of such a structure. Who would it belong to? Would it be a kind of Panama Canal to space, where everybody pays a toll to the country who builds it first? Or would it be supervised by the UN space committees? But before we get to the point where we're dodging micro-meteorites and dealing with elevator tolls, we need to surmount some technological obstacles to building the space elevator.

Here's where we are in terms of the space elevator's basic components.

The Robotic Climber, or Elevator Car

It turns out that this is the easiest part of the equation. We already have robotic climbers that can scale ropes and lift incredibly heavy objects. This aspect of the space elevator is so widely understood that the Space Elevator Conference sponsored a "kid's day" which included lego space elevator climber races. Robots designed by teens and kids competed to see which could climb "ribbons" attached to the ceiling and place a "satellite" at the top.

A company called Orbital Technologies has big plans to put a hotel in space, 217 miles above the… Read…

Of course it will take some effort to get from lego climbers to lifters big enough to haul components of a space hotel up through thousands of kilometers of atmosphere and space. But this is within the capabilities of our current technology. So we've got our elevator car.

Power Beaming Propulsion

One of the many arguments in favor of a space elevator is that it will be environmentally sustainable. Without chemical rockets, how will we send our robot lifters scuttling up that cable? The dominant theory at this point is that we'll have lasers on the space elevator platform, and a dish on the elevator that will capture the beam and convert it to power. This technology is also within our reach.

In 2009, NASA awarded $900,000 to LaserMotive for their successful demonstration of this so-called "wireless power transmission" for space elevators. In 2012, NASA will offer a similar prize for a power-beaming lunar rover. The biggest problem with the power beaming idea currently is that we are still looking at fairly low-power setups, and as the space elevator ascends higher into the atmosphere the beam will scatter and be blocked by clouds. Some conference participants estimated that only 30 percent of the beam would reach the dish.

Still, we have seen successful demonstrations of this technology, and companies are working on refining the technology. We don't quite have our perfect power beam yet, but it's on the way.

Carbon Nanotube Ribbon, or Elevator Cable

This was by far the most interesting and contentious topic at the Space Elevator Conference. An entire day was devoted to technical discussions about cutting-edge nanomaterials research and carbon nanotube production. Scientists from nanomaterials labs at Rice University andUniversity of Cincinnati gave presentations on everything from how to spin carbon nanotubes into fiber that looks like soft, black cotton, to how radiation in space could rip the molecular bonds of a carbon nanotube ribbon.

Carbon nanotube material is so light and strong that the elevator cable itself would be thinner than paper. It would literally be a ribbon, possibly several meters across, that the robotic cars would grip all the way up into space. Every year at the Space Elevator Conference, people bring carbon nanotube fibers and compete to see which can withstand the greatest strain before breaking. Winners stand to gain over a million dollars from NASA in its "strong tether" competition; sadly, this year, nobody had fibers that were strong enough to place (but you can always enter next year!).

 

publicado por sá morais às 00:42